ConnectomeDB, pyxnat, and the OHBM Hackathon

One of the datasets available for the OHBM Hackathon is the Q1 public data release from the Human
Connectome Project. In addition to the imaging data, which are mirrored on S3 for easy access from AWS D. Unknown macro: 'html'
, a great deal of imaging metadata and associated non-imaging data is accessible through ConnectomeDB
, a web application built on the XNAT imaging informatics platform.
Table of Contents
pyxnat is a library that provides a Python language APl to XNAT's RESTful web services. In this tutorial,
we'll use pyxnat to access behavioral measures stored in ConnectomeDB and to view and download the

imaging data. Even if you're not a Pythonista, read on, as the underlying XNAT REST API can be ® Accessing imaging data

accessed from just about any language. | have small examples of code using the REST API in bash, Java * Browsing the imaging

and Clojure, and I'd probably find it amusing to cook up an example in your favorite language; send me data

mail if you'd like details. ® Downloading files
from S3

Now that OHBM and the hackathon are past, most of this tutorial has been moved to a generic tutorial on * Accessing S3 data

pyxnat and ConnectomeDB. A few topics, mostly related to AWS and the S3 mirror of the Q1 data, through the Subject

remain here. object

Accessing imaging data 2L Unknown macro: 'html*

Before trying to access the data, it's important to understand what's in the Q1 release. The Q1 data
release documentation describes the session structure and file layout in detail. The Q1 imaging data are
mirrored on Amazon's S3, which is particularly useful for copying data into an EC2 instance. The Python
library boto provides an interface for many of Amazon's web services, including S3. If you installed the HC
P-customized pyxnat, you already have boto.

I'm working to extend pyxnat to translate between the internal storage paths on ConnectomeDB and the
(differently organized) copy of the data on S3. You really don't need to wait for this, though: the example
searches above produce subject labels, which is enough information to point you to the right data
directories on S3 — for example, subject 100307's data can be found at s3://hcp.aws.amazon.com/ql
/100307/ . Consult the hackathon HCP data release announcement for more details.

Browsing the imaging data

In order to start exploring and using the S3 Q1 mirror, you'll need to set up your AWS account and get
access to the Amazon-hosted data. This process will get you an access key and a secret key, which
you'll use to authenticate against S3. From a Python command line, you can browse the Q1 data by
getting a handle to the "bucket" where the data are stored:

>>> from boto. s3. connection inport S3Connection
>>> s3 = S3Connection(' your-access-key','your-secret-key')
>>> bucket = s3.get_bucket (' hcp. aws. amazon. coni)

S3is a key-value-oriented store, rather than a hierarchical filesystem, but the HCP Q1 data is stored with
keys that echo a regular file system. boto's interface to S3 makes it easy to pretend you're walking a file
tree. There is a single root element q1, and each subject is a child of that root:

>>> [k.nane for k in bucket.list('ql/","/")]

[u'gl/', u'ql/100307/', u'ql/103515/', u'ql/103818/', u'ql/111312/', u'ql
1114924/', u'ql/117122/', u'9l/118932/', u'ql/119833/', u'ql/120212/', u'ql
/125525/', u'ql/128632/', u'ql/130013/', u'ql/131621/', u'ql/137128/', u'ql
/138231/', u'ql/142828/', u'ql/143325/', u' ql/144226/', u' ql/149337/', u'ql
/150423/', u'ql/153429/', u'ql/156637/', u'ql/159239/', u'ql/161731/', u'ql
/162329/', u'ql/167743/', u'ql/172332/', u'ql/182739/', u'ql/191437/', u' ql
1192439/', u'ql/192540/', u'ql/194140/', u'ql/197550/', u'qgl/199150/', u'ql
/199251/', u'ql/200614/', u'ql/201111/', u'ql/210617/', u'ql/217429/', u'ql
1249947/', u' ql/250427/', u'ql/255639/', u'ql/304020/', u'ql/307127/', u'ql
/329440/', u'ql/355542/', u'ql/499566/', u'ql/530635/', u' gql/559053/', u'ql
/585862/', u'ql/611231/', u'ql/638049/', u'ql/665254/', u'ql/672756/', u'ql
/ 685058/', u'ql/729557/', u' ql/732243/', u'ql/792564/', u' ql/826353/', u'ql
/1 856766/', u'ql/859671/', u'ql/861456/', u'ql/865363/', u' ql/877168/', u'ql
/889579/', u'ql/894673/', u'ql/896778/', u'ql/896879/', u'ql/901139/', u'ql
/917255/', u' ql/937160/"]

Each subject is organized as described in the Q1 data release documentation.


http://ohbm-seattle.github.io
http://humanconnectome.org/data
http://humanconnectome.org
http://humanconnectome.org
http://aws.amazon.com/s3
http://aws.amazon.com
https://db.humanconnectome.org
https://db.humanconnectome.org
http://xnat.org
http://pythonhosted.org/pyxnat
http://python.org
https://wiki.xnat.org/display/XNAT/Connecting+to+the+XNAT+REST+API
https://wiki.xnat.org/display/XNAT/Connecting+to+the+XNAT+REST+API
http://www.gnu.org/software/bash/manual/bashref.html
http://www.java.com
http://clojure.org
mailto:karchie@wustl.edu?subject=OHBM Hackathon
mailto:karchie@wustl.edu?subject=OHBM Hackathon
https://wiki.humanconnectome.org/display/DataUse/Exploring+ConnectomeDB+with+Python
http://www.humanconnectome.org/documentation/Q1/data-in-this-release.html
http://www.humanconnectome.org/documentation/Q1/data-in-this-release.html
http://www.humanconnectome.org/documentation/Q1/data-in-this-release.html#standardsessionstructure
http://www.humanconnectome.org/documentation/Q1/data-in-this-release.html#processed_files
https://github.com/boto/boto
https://github.com/Human-Connectome-Project/pyxnat/tree/hcp-db
https://github.com/Human-Connectome-Project/pyxnat/tree/hcp-db
http://ohbm-seattle.github.io/blog/2013/05/03/human-connectome-project-q1-release-now-cloud-accessible/
http://ohbm-seattle.github.io/blog/2013/05/03/human-connectome-project-q1-release-now-cloud-accessible/
http://ohbm-seattle.github.io/blog/2013/05/03/human-connectome-project-q1-release-now-cloud-accessible/
http://www.humanconnectome.org/documentation/Q1/data-in-this-release.html#processed_files

>>> [k.name for k in bucket.list('ql/100307/','/")]
[u' g1/ 100307/ .xdl ', u'qgl/100307/Diffusion/', u' gl/100307/ MNI NonLi near/",
u' g1/ 100307/ Tiw ', u'ql/ 100307/ rel ease-notes/', u' gl/ 100307/ unprocessed/"]

The three key fragments associated with the "minimally preprocessed" data are Di f f usi on, MNI NonLi n
ear, and T1w. The key fragment . xdl mmarks file manifests for download integrity checking, including
checksums; while unpr ocessed marks unprocessed data.

Downloading files from S3

Now let's copy all files for the motor task with left-to-right phase encoding from S3 to a local disk.

>>> jnport errno, 0s,0s.path
>>> for k in bucket.list('qgl/100307/ MNI NonLi near/Results/tfMRI_MOTOR LR/ "):
dir = os. path.dirnane(k. nane)
try: os.makedirs(dir)
except OSError as exc:
if exc.errno == errno. EEXI ST and os.path.isdir(dir): pass
el se: raise
with open(k.name, 'wW) as f:
k.get _contents_to _file(f)

>>>

Note that we use bucket . | i st (. ..) alittle differently here: with one argument, it returns all keys
starting with the provided text, which is comparable to a full recursive listing in a hierarchical file system.

Accessing S3 data through the Subject object

The instructions above handle ConnectomeDB and S3 as different worlds; there is some limited support
for bridging this gap. Pyxnat can maintain a local mirror of the ConnectomeDB data, with contents
downloaded on request. The first piece you'll need is an object representing both sides of the mirror (the
local file space and the S3 bucket):

>>> from pyxnat.core.mrror inport S3Mrror
>>> mirror = S3Mrror.open(' hcp. aws. amazon. coni, ' your-access-key', ' your -
secret-key','/path/to/local/mrror')

Next, you'll need to hand this to the pyxnat Interface:

>>> cdb = pyxnat.|nterface('https://db. humanconnect onem
org','usernane',' password',data_mirror=mrror)
>>>

You can now access local copies of the data files through the subject object:

>>> cdb. proj ect (' HCP_QL' ). subj ect (' 100307").fil es(' MNI NonLi near/Results
/tf MRI_MOTOR LR)
[u'/path/to/local/mrror/ql/ 100307/ M\l NonLi near/ Results/tf MR _MOTOR LK/ .. .]

The return value from this call is a list of local file paths for the requested data. If the files are already on
your disk, this will return quickly; if not, the files are downloaded before the files() call returns. You can
request all of a subject's data by skipping the root path argument:

>>> cdb. proj ect (' HCP_QL' ). subj ect (' 100307").fil es()

Note that this will most likely take a really long time, because a single subject is close to 20 GB, unless
you have a very fat pipe to S3 -- say, from an EC2 instance. (This is why I'm not even showing the return
value. It's a long list of files. You probably should find think about whether you really need all those files,
and find a better way to get them if you do.)


http://www.humanconnectome.org/documentation/Q1/data-in-this-release.html#preprocessed
http://www.humanconnectome.org/documentation/Q1/data-in-this-release.html#unprocessed
http://humanconnectome.org/data/connectome-in-a-box.html

	ConnectomeDB, pyxnat, and the OHBM Hackathon

